Abstract

The objective of this research was to investigate the effect of mold temperature on grain interior and grain boundary reactions in a14-karat gold alloy. The alloy (Au-15%Ag-3%Pd-24 mass%Cu) was cast into an investment with different mold temperatures (22, 250,400, and 700°C) and then analyzed using SEM, X-ray diffraction, and potentiodynamic polarization tests. Lower mold temperatures(22 and 250°C) retarded a grain boundary reaction evidently present when using higher mold temperatures (400 and 700°C). Phase separation, which was manifested as a dual phase grain boundary nodular formation, was observed at a higher degree at 400°C mold temperature than at 700°C. The corrosion potentials of alloys cast at lower mold temperatures were more noble than those cast at higher mold temperatures, suggesting improved corrosion properties. Results of this study showed that the microstructure, crystalline phases present, and corrosion properties of 14-karat gold alloy were keenly influenced by the mold temperature, which controls and influences the cooling rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.