Abstract

Fluxes of methane (CH4) and nitrous oxide (N2O) from two rice varieties, Huayou 14 and Hanyou 8, were monitored using closed chamber/gas chromatography method. Huayou 14 is a commonly grown variety of rice whereas Hanyou 8 is a water-saving and drought-resistant rice (WDR) variety. Low soil volumetric water content (VWC) existed in the treatments on the slope (W5 < W4 < W3 < W2). On the slope, rice yields of Hanyou 8 decreased by 12-39%, and Huayou 14 by 11-46% as compared to the plots on the flat. The total compatible solutes in Hanyou 8 had a greater variational range than Huayou 14. Compared to W1, CH4 emissions from W2-W5 decreased by 58-86% in Hanyou 8 and 38-86% in Huayou 14, whereas those of N2O increased by 26-121% in Hanyou 8 and 49-189% in Huayou 14 across both two seasons, which was mainly because the VWC varied in W2-W5 treatment. Under the treatments in the slope (W2, W3, W4, and W5), the global warming potential (GWP) was dominated by N2O emissions, which accounted for 69-90% of the GWP. Hanyou 8 had greater tolerance for water stress than Huayou 14 did, as evident from the smaller reductions in rice yield and greater variational range of total compatible solutes content. Water stress could reduce CH4 emissions but decrease N2O emissions for both rice varieties. This results suggest that planting WDR varieties under water shortage irrigation (such as W4, W5) will be able to maintain rice yields and reduce the GWP with less water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call