Abstract

Modeccin inhibits polypeptide-chain elongation catalysed by Artemia salina (brine shrimp) ribosomes by inactivating the 60 S ribosomal subunit. Among the individual steps of elongation, peptide-bond formation, catalysed by 60 S peptidyltransferase, is unaffected by the toxin, whereas the binding of EF 2 (elongation factor 2) to ribosomes is strongly inhibited. Modeccin does not affect the poly(U)-dependent non-enzymic binding of either deacylated tRNAPhe or phenylalanyl-tRNA to ribosomes. The inhibitory effect of modeccin on the EF 1 (elongation factor 1)-dependent binding of phenylalanyl-tRNA is discussed, since it is decreased by tRNAPhe, which stimulates the binding reaction. The analysis of the distribution of ribosome-bound radioactivity during protein synthesis shows that modeccin consistently inhibits the radioactivity bound as long-chain peptides, but depending on the experimental conditions, can leave unchanged or even greatly stimulates the radioactivity bound as phenylalanyl-tRNA and/or short-chain peptides. It is concluded that, during the complete elongation cycle, modeccin does not affect the binding of the first aminoacyl-tRNA to ribosomes, but inhibits some step in the subsequent repetitive activity of either EF 1 or EF 2. The results obtained indicate that the mechanism of action of modeccin is very similar to that of ricin and related plant toxins such as abrin and crotin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call