Abstract

In order to realize a smart grid, Advanced Metering Infrastructure (AMI) has started to be deployed. AMI automates meter reading operations and enables real-time monitoring of power usage. Monitoring power consumption data will be useful for power generation planning, power demand control, and peak shift. In addition to monitoring power consumption, in AMI networks, other types of communication (e.g., gas and water consumption, demand response for electricity, and inquiries to electric power companies) can be accommodated by using surplus bandwidth. An essential part of AMI is a set of electricity meters with communication functions, called smart meters, which transmit power consumption data to electric power companies periodically with fixed intervals. They have been installed in houses, factories, or buildings, and are expected to be equipped with electric vehicles in a future. We can also save energy by turning off smart meters when it is not necessary to communicate. In this paper, we present an analytical model to evaluate the performance of AMI taking the randomness of the number of smart meters into consideration, caused by the turn on/off of meters and mobility of meters across the AMI network coverage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call