Abstract

Abstract Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC–TiN–WC–Mo2C–Co cermets was studied in this work. Mechanical properties such as transverse rupture strength, fracture toughness and hardness were also measured. Results show that the microstructure exists in black core/grey rim structure and white core/grey rim structure, and the microstructure has an obvious trend to become finer with the increase of molybdenum content. When the added Mo exceeds 10%, ultra-fine TiC-based cermet with an average particle size of less than 0.5 μm is obtained, because of the formation of a Mo-rich rim and the improvement of the wettability between ceramic phase and metallic phase. The transverse rupture strength increases with the increase of Mo content, and the maximum values of the hardness and the fracture toughness were found with 10 wt% and 5 wt% Mo addition, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.