Abstract

To investigate the impact of milling on the active components in rice, this study examined the stability of phenols, vitamin B1 (VB1), and alpha-aminobutyric acid (α-GABA) during cooking and digestion of rice and their distribution in digestive juices and residue by adjusting the degree of milling (DOM). The findings revealed that milling exacerbated the instability of γ-GABA during cooking and VB1 during digestion. Their total losses peaked at 19.76% and 39.53% as DOM respectively reached 6.07% and 8.06%. In vitro digestion combined with release mathematical models demonstrated the impact of milling on their bioaccessibility. This effect increased the small intestinal bioaccessibility of phenols and γ-GABA, whilst reducing that of VB1. This was attributed to milling-induced pre-gastric full release of VB1, which amplifies its intestinal susceptibility and induces its re-entry into digestive residues. In conclusion, this study recommends keeping DOM below 6.07% to optimize the bioaccessibility of these active compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call