Abstract

AbstractPreparing lightweight and versatile products is the unremitting goal of industry to save resources and energy. Lightweight carbon fiber reinforced polypropylene (CF/PP) composite foams with high‐performance electromagnetic interference (EMI) shielding materials were fabricated by microcellular injection molding (MIM) technology. The average length and distribution of CF in CF/PP composite foams were examined. Thanks to the introduction of foaming process, the average CF length of composite foams was 33.98% longer than that of solids, which effectively enhanced the electrical conductivity and EMI shielding properties. The effect of shot size, gas content, and injection rate on the electrical conductivity and EMI properties was investigated. With melt shot size of 2/3 of the cavity volume, gas content of 0.5 wt% N2 and injection rate of 100 mm/s, optimal cellular structure of the composite material was obtained. The EMI shielding effectiveness (SE) reaches 36.94 dB, which is the highest value achieved by using MIM technology to the best of the authors' knowledge. In addition, the mechanical properties of cellular structure can still maintain good values, with the tensile strength and impact strength improved by 15.3% and 14.03%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.