Abstract

In this paper, a novel resorcinol-formaldehyde-free and environmentally friendly adhesives for polyester (PET) fiber impregnation treatment were compounded successfully. First, a network structure was formed by reacting micromolecular and water-soluble glycerol triglycidyl ether (GLTE) and triethylenetetramine (TETA). Then, this was mixed with latex in order to prepare an impregnation solution glycerol triglycidyl ether-triethylenetetramine-butyropyridine latex system (GTL), which can replace the toxic components (resorcinol and formaldehyde) of the resorcinol-formaldehyde-latex (RFL) impregnation system. Similarly, the macromolecular epoxy resin E-51-triethylenetetramine-butyropyridine latex system (ETL) and the traditional RFL impregnation system were also prepared in order to compare with the GTL. Further, the reaction conditions of the impregnation system, the surface chemical composition and interfacial properties were characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and peeling strength, respectively. The results showed that the peeling adhesion performance between the GTL-modified PET fabric and the rubber (38.5% higher than that of the ETL impregnation solution) was comparable to that of the RFL impregnation system because of micromolecular and more active GLTE. This study provides new insights into the interface design of PET/rubber composites and will facilitate the development of PET/rubber composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call