Abstract
Minor physical defects can decrease the dielectric efficiency of epoxy resin and severely threaten the electrical device’s dependability. Self-healing may be considered an effective method to preserve the electrical and mechanical properties of the epoxy resin. Besides, self-healing significantly decreases the influence of small physical destruction on the power system. In this research, epoxy resin incorporated with various concentration of microcapsules was prepared. The polyurea formaldehyde (PUF) microcapsules were treated using a silane coupling agent (KH550) to enhance dispersion. Moreover, the self-healing performance of the epoxy resin incorporated with microcapsules was analyzed by FTIR, SEM, and DC Flashover in air and vacuum. In addition, trap energy and trap density were obtained from measurements of surface potential decay (ISPD). The SEM results indicate that in comparison with pure epoxy resin, the microcapsule/epoxy resin composite has an improved self-healing performance. The DC Flashover of epoxy resin in air and vacuum was found relatively higher after incorporation of microcapsules than pure epoxy resin. The distribution of trap energy and trap density measured by surface potential decay measurements confirms that 5 wt% have deeper traps and the highest trap energy levels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.