Abstract

Micro-bubble is one of the most promising methods for reduction of skin friction drag. The injection of gas bubbles into a turbulent boundary layer may have multiple impacts on the turbulent flow structure. This work aims to understand the interaction between micro-bubbles and the turbulent boundary layer, especially the effect of the bubble layer thickness on the skin-friction drag reduction. Large eddy simulation was conducted for a turbulent boundary layer over a flat plate, injected with micro-bubbles, with a view to reduce skin-friction drag. The Reynolds number Re θ examined was 1430 based on the momentum thickness θ and free-stream velocity \( U_{\infty } \). A three-dimensional perturbation method was deployed to generate a turbulent boundary layer within a short distance of inflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.