Abstract

Significant seasonal variation of groundwater arsenic (As) concentrations in shallow aquifers of the Jianghan Plain, central Yangtze River Basin has been reported recently, but the underlying mechanisms remain not well understood. To elaborate biogeochemical processes responsible for the observed As concentration variation, 42-day incubation experiments were done using sediment samples collected respectively from the depth of 26, 36 and 60m of the As-affected aquifer which were labeled respectively as JH26, JH36, JH60. Where JH denotes Jianghan Plain, and the number indicates the depth of the sediment sample. The results indicated that As could be mobilized from the sediments of 26m and 36m depth under the stimulation of exogenous organic carbon, with the maximum As release amount of 1.60 and 1.03mgkg−1, respectively, while the sediments at 60m depth did not show As mobilization. The microbially mediated reductive dissolution of amorphous iron oxides and reduction of As(V) to As(III) could account for the observed As mobilization. The 16S rRNA high-throughput sequencing results indicated that the variation of microbial community correlated with the released As concentration (R=0.7, P<0.05) and the iron-reducing bacteria, including Pseudomonas, Clostridium and Geobacter, were the main drivers for the As mobilization from the sediments at 26m and 36m depth. The increase of arsC gene abundance (up to 1.4×105 copies g−1) during As release suggested that As reduction was mediated by the resistant reduction mechanism. By contrast, in the 60m sediments where the Fe and As release was absent, the iron-reducing bacteria accounted for a very minor proportion and sulfate-reducing bacteria were predominant in the microbial community. In addition, after 30days of incubation, the released As in the 26m sediments was immobilized via co-precipitation with or adsorption onto the Fe-sulfide mineral newly-formed by the bacterial sulfate reduction. These results are consistent with the results of our previous field monitoring, indicating that the bacterial sulfate reduction could lead to the temporal decrease in groundwater As concentrations. This study provides insights into the mechanism for As mobilization and seasonal As concentration variation in the Pleistocene aquifers from alluvial plains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.