Abstract

Microbial fuel cells (MFCs) offer an excellent solution to tackle some of the major challenges currently faced by humankind: sustainable energy sources, waste management and water stress. Besides treating wastewater and producing useful electricity from urine, ceramic MFCs can also generate biocidal catholyte in-situ. It has been proved that the electricity generation from the MFCs has a high impact in the catholyte composition. Therefore, the catholyte composition constantly changes while electricity is generated. However, these changes in catholyte composition with time has not yet been studied and that could highly contribute to the disinfection efficacy. In this work, the evolution of the catholyte generation and composition with the MFC operation time has been chemically and microbiologically evaluated, during 42 days. The results show an increase in pH and conductivity with the operation time, reaching pH 11.5. Flow cytometry and luminometer analyses of bioluminescent pathogenic E. coli exposed to the synthesised catholyte revealed killing properties against bacterial cells. A bio-electrochemical system, capable of electricity generation and simultaneous production of bactericidal catholyte from human urine is presented. The possibility to electrochemically generate in-situ a bacterial killing agent from urine, offers a great opportunity for water reuse and resource recovery for practical implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.