Abstract

The present study was performed on primary A319.2 alloy to investigate the effect of magnesium addition as well as other melt treatment parameters such as Sr modification and grain refinement on the heat treatment behaviour of the alloy. The results show that increasing the Mg content in A319.2 up to 0.45% considerably enchances the alloy response to heat treatment in the T5 and T6 tempers, more particularly, the T6 temper. Modification of the high-Mg version of 319 alloy with Sr in amounts of ∼350 ppm results in a marked amount of porosity formation which counteracts the beneficial effect of the modification, leading to a noticeable decline in the alloy strength. Grain refining the Sr-modified (A319.2 + 0.45% Mg) alloy produces sounder castings and, hence, an identical ageing response to that offered by unmodified high-Mg alloys. The properties, however, are more consistent. Addition of Mg (∼0.45%) leads to the precipitation of coarse particles of Al5Mg8Si6Cu2. Modification with Sr tends to cause severe segregation of both Cu-containing intermetallics, i.e., Al2Cu and Al5Mg8Si6Cu2 in areas away from the growing Al-Si eutectic regions. Thus, their dissolution rates are fairly sluggish upon solutionizing at 505 °C. Increasing the solutionizing temperature would lead to incipient melting of the phases and, hence, a catastrophic failure. Fracture of intermetallic phases in the interdendritic regions is mostly brittle, with the formation of microcracks at the Si, Cu, Fe-base intermetallics and aluminium interfaces. Fracture of the α-aluminium is always ductile. Hardening during ageing occurs by cooperative precipitation of Al2Cu and Mg2Si phase particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.