Abstract
Diamond-coated tools can greatly improve the productivity of machining highly abrasive materials such as high silicon–aluminium alloys used in the automotive industry. Cemented-carbide diamond-coated tool inserts have not become an off-the-shelf product owing to several difficulties including insufficient adhesion of diamond to the substrate and questionable reproducibilty in their machining performance in the manufacturing. In order to overcome these difficulties, a better understanding of the effects of the chemical vapour deposition (CVD) conditions such as methane concentration, reactor pressure and substrate temperature is important. In this work, cemented tungsten carbide tool inserts with 6 wt% Co (WC–Co) were coated with diamond films deposited at five different methane concentrations (1–9 vol%). Here we present preliminary results of the effect of methane concentration variation on the following physical properties of the diamond coating: surface morphology; crystal structure; chemical quality; surface roughness; residual stress. The results indicate that the best physical properties of diamond-coated tool inserts using hot-filament CVD are achieved with diamond coatings deposited at methane concentrations ranging from 1 to 3%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have