Abstract
Degradation of hyaluronic acid (measured viscometrically) by oxygen-derived free radicals (ODFR) generated 1) by autoxidation of ferrous EDTA chelates and 2) enzymatically by xanthine oxidase and hypoxanthine (XO/HX) was studied. Degradation of hyaluronic acid by XO/HX was strongly inhibited by superoxide dismutase and catalase, whereas degradation of hyaluronic acid by autoxidation of ferrous ions was weakly inhibited by catalase and unaffected by superoxide dismutase. Both ODFR-producing systems were inhibited by hydroxyl radical scavengers, suggesting that hydroxyl radical was the proximate damaging species in both systems. Penicillamine at concentrations of 1-5 mM stimulated hyaluronic acid degradation by ferrous EDTA chelates but inhibited degradation by the XO/HX system. Higher concentrations of penicillamine and all concentrations studied (1-100 mM) of other antiinflammatory drugs (chloroquine, gold sodium thiomalate, and salicylate) inhibited hyaluronic acid degradation by both the autoxidation and enzymatic ODFR-producing systems, with inhibitory potency similar to that seen with known hydroxyl radical scavengers. Both systems serve as in vitro models of ODFR-mediated tissue damage which may occur in vivo at sites of inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.