Abstract

Nowadays, there have been extensively theoretical studies on the phenomenon of ion current rectification (ICR) induced by the asymmetric electrical double layer (EDL). As a key factor influencing the behavior of ion transport, temperature is given high priority by researchers. The thermal conductivity of the material commonly employed to prepare nanopores is 2–3 times higher than that of liquid solutions, which may affect ion transport within the nanochannel. However, it is often neglected in previous studies. Thus, we investigate the effect of membrane thermal conductivity on the ICR in conical nanochannels under asymmetric temperature. Based on the PNP-NS theoretical model, the ion current, the rectification ratio, as well as the temperature and ion concentration distributions along the nanochannel are calculated. It is found that the thermal conductivity of the solid membrane noticeably affects the temperature distribution across the nanochannel, altering the ion transport behavior. Larger membrane thermal conductivity tends to homogenize the temperature distribution in the nanochannel, leading to a decline of ionic thermal down-diffusion by a positive temperature difference and ionic thermal up-diffusion by a negative temperature difference, with the former promoting and the latter inhibiting ion current. As a result, the rectification ratio decreases under the positive temperature difference and increases under the negative temperature difference as the thermal conductivity of the membrane increases. These studies will be instructive for the design of nanofluidic diodes and biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call