Abstract

We synthesize Ce3+-doped oxyfluoride glass ceramics (GCs) with different melting times employing the conventional melt-quenching method. We investigate the crystal structure and photoluminescence properties of Ce3+-doped GCs in detail in order to evaluate the effect of melting times on the downshifting properties. The photoluminescence properties revealed that the Ce3+ doped GCs have an intense emission band in the broad region from 480 to 600 nm under 427 nm excitation. We improve the energy-conversion efficiency of a-Si solar cells by 0.41%, from 5.02% to 5.43%, by incorporating the Ce3+-doped GCs with a melting time of 1.5 h. The above results indicate that Ce3+-doped GCs can be a promising candidate as downshifting materials for applications in a-Si solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.