Abstract
This paper investigates how straining mechanisms of angular media (crushed limestone) provide improved filtration performance compared to rounded media (river stone). Columns of granular media were set in resin, sectioned, photographed, and digitized to produce a three-dimensional model of pore space geometry. This process was repeated for four filter media, each representing different grain shapes or packing densities. From measured pore throat distributions, a stepwise particle movement model was used to estimate the maximum volume of particles that could be stored in the bulk of the filter media. The results showed that the more angular the media, the wider the range of particle sizes that could be strained in the bulk of the filter. The stepwise model was applied only to individual particles; trapping of colloidal particles was not considered. However, when individual particles are too small to be strained, the same pore throat trapping contributes to the physical capture of avalanches and flocculates. Thus the findings of this work are relevant to deep bed filtration applications where headloss results from straining, such as storm-water best management practices or soil filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.