Abstract

Accumulation of interfacial charge creates local field distortion during insulation response measurement. Furthermore, such localized field enhancement affects the interaction between polar compounds present within oil-paper insulation and in turn affects its aging process. By getting sufficient trap energy (normally by thermal oscillation) these trapped charges dislocate from their locations and contribute in depolarization current. These interfacial charges include charges dislocated from shallow and deep sites at interfacial region. The charge residing at deep locations takes more time to dislodge themselves compared to charge residing at shallow sites. As dipole present in cellulose has large relaxation time, there might be some relation between deep charge and paper insulation sensitive parameters. In this work, effects of temperature on deep traps are analyzed. Results reported in this paper shows that magnitude of charge freed from deep locations maintains a correlation with measurement temperature and paper conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.