Abstract

IntroductionPermeability changes in the blood–brain barrier (BBB) and their possible contribution to brain edema formation have a crucial role in the pathophysiology of septic encephalopathy. Magnesium sulfate has been shown to have a protective effect on BBB integrity in multiple experimental models. In this study we determine whether magnesium sulfate administration could have any protective effects on BBB derangement in a rat model of sepsis.MethodsThis randomized controlled experimental study was performed on adult male Sprague–Dawley rats. Intraperitoneal sepsis was induced by using the infected fibrin–thrombin clot model. To examine the effect of magnesium in septic and sham-operated rats, a dose of 750 μmol/kg magnesium sulfate was given intramuscularly immediately after surgery. Control groups for both infected and sham-operated rats were injected with equal volume of saline. Those rats surviving for 24 hours were anesthetized and decapitated for the investigation of brain tissue specific gravity and BBB integrity by the spectrophotometric assay of Evans blue dye extravasations. Another set of experiments was performed for hemodynamic measurements and plasma magnesium level analysis. Rats were allocated into four parallel groups undergoing identical procedures.ResultsSepsis significantly increased BBB permeability to Evans blue. The dye content of each hemisphere was significantly lower in the magnesium-treated septic rats (left hemisphere, 0.00218 ± 0.0005; right hemisphere, 0.00199 ± 0.0007 [all results are means ± standard deviation]) than in control septic animals (left hemisphere, 0.00466 ± 0.0002; right hemisphere, 0.00641 ± 0.0003). In septic animals treated with magnesium sulfate, specific gravity was higher (left hemisphere, 1.0438 ± 0.0007; right hemisphere, 1.0439 ± 0.0004) than in the untreated septic animals (left hemisphere, 1.0429 ± 0.0009; right hemisphere, 1.0424 ± 0.0012), indicating less edema formation with the administration of magnesium. A significant decrease in plasma magnesium levels was observed 24 hours after the induction of sepsis. The dose of magnesium that we used maintained the baseline plasma magnesium levels in magnesium-treated septic rats.ConclusionsMagnesium administration attenuated the increased BBB permeability defect and caused a reduction in brain edema formation in our rat model of intraperitoneal sepsis.

Highlights

  • Permeability changes in the blood–brain barrier (BBB) and their possible contribution to brain edema formation have a crucial role in the pathophysiology of septic encephalopathy

  • Thirteen of 29 rats in group S and 10 of 26 rats in group septic MgSO4-treated (S-Mg) died within 24 hours after the induction of sepsis, whereas all Plasma magnesium levels were comparable between groups at baseline (Table 1)

  • Quantitative estimation of the Evans blue (EB) dye revealed that sepsis significantly increased BBB permeability as measured by EB extravasations into brain tissue

Read more

Summary

Introduction

Permeability changes in the blood–brain barrier (BBB) and their possible contribution to brain edema formation have a crucial role in the pathophysiology of septic encephalopathy. Magnesium sulfate has been shown to have a protective effect on BBB integrity in multiple experimental models. In this study we determine whether magnesium sulfate administration could have any protective effects on BBB derangement in a rat model of sepsis. Studies have suggested that septic encephalopathy might involve a disturbance of plasma and brain neutral amino acid transport across the blood–brain barrier (BBB), similar to those seen in porto-systemic encephalopathy. This process has been related to the breakdown of the BBB because patients with septic encephalopathy have high protein levels in the cerebrospinal fluid [2]. Derangements in the BBB causing perivascular edema have been demonstrated in sepsis-induced pigs [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call