Abstract

To determine if, and by what mechanisms, inhaled nitric oxide attenuates acute lung injury in a porcine model of adult respiratory distress syndrome induced by Gram-negative sepsis. Nonrandomized, controlled study. Laboratory at a university medical center. Thirty pathogen-free Yorkshire swine (15 to 20 kg). Four groups of swine were anesthetized, mechanically ventilated, and studied for 5 hrs. Both control-nitric oxide and septic-nitric oxide animals received inhaled nitric oxide at 20 parts per million throughout the study. Control (n = 10) and control-nitric oxide (n = 5) animals received a 1-hr infusion of sterile saline. Sepsis was induced in septic (n = 10) and septic-nitric oxide (n = 5) animals with a 1-hr intravenous infusion of live Pseudomonas aeruginosa. Untreated septic animals developed a progressive decrease in Pao2 that was prevented in septic-nitric oxide animals (73 +/- 4 vs. 214 +/- 23 torr [9.7 +/- 0.5 vs. 28.5 +/- 3.1 kPa], respectively, at 5 hrs, p < .05). Untreated septic animals showed a significant increase in bronchoalveolar lavage protein and neutrophil count at 5 hrs, compared with the baseline value, indicating acute lung injury. Septic-nitric oxide animals showed no significant increase in these parameters. Peripheral blood neutrophils from untreated septic animals and septic-nitric oxide animals exhibited significant (p < .05) up-regulation of CD18 receptor expression and oxidant activity (10.5 +/- 0.9 and 5.0 +/- 0.9 nmol of superoxide anion/10(6) neutrophils/10 mins, respectively) compared with both control and control-nitric oxide animals (3.0 +/- 0.6 and 2.6 +/- 0.2 nmol of superoxide anion/10(6) neutrophils/10 mins, respectively). Also, priming for the oxidant burst at 5 hrs was decreased by 50% in septic-nitric oxide animals compared with untreated septic animals. Both untreated septic and septic-nitric oxide animals showed a significant increase in pulmonary arterial pressure at 30 mins (47.5 +/- 2.4 and 51.0 +/- 3.0 mm Hg, respectively), followed by a progressive decrease (32.8 +/- 2.6 and 31.3 +/- 5.4 mm Hg, respectively, at 5 hrs). Both of these changes were significant (p < .05) compared with baseline values and compared with the control groups. There was no significant difference in pulmonary arterial pressure or systemic arterial pressure at any time between untreated septic and septic-nitric oxide animals. These results demonstrate that inhaled nitric oxide attenuates alveolar-capillary membrane injury in this porcine model of Gram-negative sepsis but does not adversely affect systemic hemodynamics. The data suggest that inhaled nitric oxide preserves alveolar-capillary membrane integrity by the following means: a) inhibiting transendothelial migration of activated, tightly adherent neutrophils; and b) possibly by attenuating the neutrophil oxidant burst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.