Abstract

AISI 316L stainless steel has received considerable attention as a common material for key ball valve components; however, its properties cannot be improved through traditional phase transformation, and fretting wears the contact interface between valve parts. A carburized layer was prepared on the surface of AISI 316L stainless steel by using double-glow low-temperature plasma carburization technology. This study reveals the effect of double-glow low-temperature plasma carburization technology on the fretting wear mechanism of AISI 316L steel under different normal loads and displacements. The fretting wear behavior and energy dissipation of the AISI 316L steel and the carburized layer were studied on an SRV-V fretting friction and wear machine with ball–plane contact. The wear mark morphology was analyzed by using scanning electron microscopy (SEM), the phase structure of the carburized layer was characterized with X-ray diffractometry (XRD), and the wear profile and wear volume were evaluated with laser confocal microscopy. The carburized layer contains a single Sc phase, a uniform and dense structure, and a metallurgically combined matrix. After plasma carburizing, the sample exhibited a maximum surface hardness of 897 ± 18 HV0.2, which is approximately four times higher than that of the matrix (273 ± 33 HV0.2). Moreover, the surface roughness was approximately doubled. The wear depth, wear rate, and frictional dissipation energy coefficient of the carburized layer were significantly reduced by up to approximately an order of magnitude compared with the matrix, while the wear resistance and fretting wear stability of the carburized layer were significantly improved. Under different load conditions, the wear mechanism of the AISI 316L steel changed from adhesive wear and abrasive wear to adhesive wear, fatigue delamination, and abrasive wear. Meanwhile, the wear mechanism of the carburized layer changed from adhesive wear to adhesive wear and fatigue delamination, accompanied by a furrowing effect. Under variable displacement conditions, both the AISI 316L steel and carburized layer mainly exhibited adhesive wear and fatigue peeling. Oxygen elements accumulated in the wear marks of the AISI 316L steel and carburized layer, indicating oxidative wear. The fretting wear properties of the AISI 316L steel and carburized layer were determined using the coupled competition between mechanical factors and thermochemical factors. Low-temperature plasma carburization technology improved the stability of the fretting wear process and changed the fretting regime of the AISI 316L steel and could be considered as anti-wearing coatings of ball valves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.