Abstract

This study aimed to compare the effect of upper and lower body high intensity exercise (HIE) on select gene expression in athletes. Fourteen elite male artistic gymnasts (age 20.9 ± 2.6 years; weight 68.6 ± 7.2 kg; fat free mass 63.6 ± 6.7 kg; height 1.70 ± 0.04 m) performed lower and upper body 30 s Wingate Tests (WAnTs) before and after eight weeks of specific HIIT. Two milliliters of blood was collected before and after (5, 30 min, resp.) lower and upper body WAnTs, and select gene expression was determined by PCR. Eight weeks of HIIT caused a significant increase in maximal power (722 to 751 Wat), relative peak power in the lower body WAnTs (10.1 to 11 W/kg), mean power (444 to 464 W), and relative mean power (6.5 to 6.8 W/kg). No significant differences in lower versus upper body gene expression were detected after HIIT, and a significant decrease in the IL6/IL10 ratio was observed after lower (−2∧0.57 p = 0.0019) and upper (−2∧0.5 p = 0.03) WAnTs following eight weeks of HIIT. It is hypothesized that a similar adaptive response to exercise may be obtained by lower and upper body exercise.

Highlights

  • High intensity interval training (HIIT) has become increasingly popular in recent years, in both sport and recreation, as it produces results faster in various athletic categories: muscle strength, muscle oxidative capacity, and muscle glycogen content

  • Eight weeks of HIIT caused a significant increase in maximal power (722 to 751 W after training, 4% increase) and relative peak power (10.1 to 11 W/kg after training, 3.8% increase) in lower body Wingate Anaerobic Tests (WAnTs)

  • There were no significant differences in gene expression between lower and upper body Wingate at either time points

Read more

Summary

Introduction

High intensity interval training (HIIT) has become increasingly popular in recent years, in both sport and recreation, as it produces results faster in various athletic categories: muscle strength, muscle oxidative capacity, and muscle glycogen content. These results are similar to those obtained by conventional endurance training [1, 2]. Previous data regarding high intensity exercise suggests that this type of muscle effort causes metabolic changes on multiple levels, altering the production of interleukins and heat shock proteins [10,11,12]. There is BioMed Research International considerable evidence demonstrating the influence of various exercise types on inflammation [13, 14] and gene expression of heat shock proteins [15, 16], thereby mediating the health benefits of episodic and prolonged exercise

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call