Abstract

With the popularity of electric vehicles and climate change, it has become a typical scene to charge lithium-ion batteries (LIBs) at low temperatures at a high rate. Low temperature and high-rate charge and discharge would change the performance and then affect temperature rises, heat production and thermal runaway (TR) characteristics. This study tests the temperature rises of aging 18650 LIBs at various ambient temperatures and charge and discharge rates. The entropy and enthalpy changes of the batteries are computed based on the entropy coefficients, and subsequently, the heat productions of the batteries are computed. The TR test is carried out to explore the influence of rapid aging at low temperature environment on the thermal safety of LIBs. In this work, the heat generation mechanism and thermal runaway characteristics of lithium-ion batteries after low-temperature and high-rate cyclic aging are introduced in detail, aiming to provide a reference for the process safe design and application of lithium-ion batteries at low-temperature and fast charging scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.