Abstract

High-quality Ga-doped ingots are grown in different casting furnaces at optimized growth parameters; 3·5 kg ingots exhibit normal distribution of diffusion lengths along their height with very high diffusion lengths at the center of the ingot. Effective lifetimes as high as 1·1 ms are realized in 10 Ω cm Ga-doped wafers after proper P-diffusion and hydrogen passivation. Average effective lifetimes above 400 µs are also realized after P-diffusion and hydrogen passivation for Ga-doped wafers cut from 75 kg ingot where the response to P-diffusion and hydrogen passivation is pronounced. High effective lifetimes are realized over the whole ingot with minimum values of 20 µs at the top of the ingot, indicating the possible use of about 85% of the ingot for solar cell production. Conversion efficiencies above 15·5% were realized in utilizing more than 80% of the ingot. High efficiencies of about 16% were realized in wafers with resistivities higher than 5 Ω cm p-type multicrystalline silicon wafers. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.