Abstract

Double-strand breaks in giant DNA molecules caused by continuous ultrasound at a frequency of 30 kHz were quantified using single-molecule observations. The effect of the sound pressure was investigated by placing a tube containing DNA solution under an anti-node of the acoustic standing wave. Almost no breaks occurred below the threshold sound pressure. Above this threshold, the probability of strand breaks increased linearly with sound pressure. Acoustic cavitation detected with a hydrophone strongly suggests that the main mechanism of the DNA strand break is via cavitation generated by the ultrasound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call