Abstract

BackgroundSwimming economy refers to the rate of energy expenditure relative to swimming speed of movement, is inversely related to the energetic cost of swimming, and is as a key factor influencing endurance swimming performance. The objective of this study was to determine if high-carbohydrate, low-fat (HCLF) and low-carbohydrate, high-fat (LCHF) diets affect energetic cost of submaximal swimming.MethodsEight recreational swimmers consumed two 3-day isoenergetic diets in a crossover design. Diets were tailored to individual food preferences, and macronutrient consumption was 69–16-16% and 16–67-18% carbohydrate-fat-protein for the HCLF and LCHF diets, respectively. Following each 3-day dietary intervention, participants swam in a flume at velocities associated with 50, 60, and 70% of their maximal aerobic capacity (VO2max). Expired breath was collected and analyzed while they swam which enabled calculation of the energetic cost of swimming. A paired t-test compared macronutrient distribution between HCLF and LCHF diets, while repeated-measures ANOVA determined effects of diet and exercise intensity on physiological endpoints.ResultsRespiratory exchange ratio was significantly higher in HCLF compared to LCHF (p = 0.003), but there were no significant differences in the rate of oxygen consumption (p = 0.499) or energetic cost of swimming (p = 0.324) between diets. Heart rate did not differ between diets (p = 0.712), but oxygen pulse, a non-invasive surrogate for stroke volume, was greater following the HCLF diet (p = 0.029).ConclusionsA 3-day high-carbohydrate diet increased carbohydrate utilization but did not affect swimming economy at 50–70% VO2max. As these intensities are applicable to ultramarathon swims, future studies should use higher intensities that would be more relevant to shorter duration events.

Highlights

  • It is well established that providing adequate carbohydrate to working muscles is a key contributor to optimal endurance performance [1]

  • Rate of O2 consumption increased with exercise intensity (F(1.18,8.23) = 23.79, p < 0.001), but there was no difference between diets (Fig. 2a)

  • Energetic cost of swimming ranged from 649 J m− 1 at 50% Maximal aerobic capacity (VO2max) on the LCHF diet to 755 J m− 1 at 70% VO2max on the HCLF diet

Read more

Summary

Introduction

It is well established that providing adequate carbohydrate to working muscles is a key contributor to optimal endurance performance [1]. Improved cycling efficiency (i.e., lower rate of energy expenditure at the same power) has been reported following 3 days of a high-carbohydrate, low-fat (HCLF) diet [12], and movement economy was decreased (i.e., higher rate of energy expenditure at the same velocity) in runners and race walkers following 5 days [7, 8] and 3–4 weeks [13,14,15] of ketogenic LCHF dietary interventions. It is currently unknown if dietary changes can influence swimming economy. The objective of this study was to determine if high-carbohydrate, low-fat (HCLF) and lowcarbohydrate, high-fat (LCHF) diets affect energetic cost of submaximal swimming

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call