Abstract

An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20–40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call