Abstract
In short-term experiments, male Wistar rats were made diabetic for 10 days with a single injection of streptozotocin (65 mg/kg body weight). One group of diabetic rats was treated with insulin for 3 days prior to sacrifice. In long-term experiments, vitamin D replete or vitamin D depleted rats were made diabetic for 6 weeks. Criteria for diabetes were loss of weight, glycosuria (Tes-Tape), and hyperglycemia. In long-term diabetic rats the activity of renal mitochondrial 25-hydroxyvitamin D3 (25-(OH)D3) 1 alpha-hydroxylase was significantly decreased and that of 25-(OH)D3 24-hydroxylase increased. However, the parathyroid hormone (PTH) sensitive renal adenylate cyclase activity of diabetic rats was not different from that of the nondiabetic rats in either the vitamin D replete group or the vitamin D depleted group. On the other hand, the PTH-sensitive renal adenylate cyclase activity was significantly higher in short-term diabetic rats than in control and insulin-treated rats. These differences were observed at doses of 10(-8) to 10(-5) M of PTH. This study has demonstrated for the first time that there are differences in the PTH-sensitive adenylate cyclase response between long-term and short-term diabetic rats. The hypersensitivity to PTH of the renal adenylate cyclase observed in short-term diabetic rats probably represents a response to insulin deficiency during the early development of diabetes mellitus in the rats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have