Abstract

Long-distance inter-basin water transfer solves the problem of unbalanced water resources in different regions. However, it also changes the natural water chemistry characteristics as well as the bioavailability of heavy metals in the receiving water. In this study, taking the South-to-North Water Transfer Project in China as an example, the basic physicochemical characteristics of the source water (in the Danjiangkou (DJK) Reservoir) and receiving water (in the Beitang (BT) Reservoir) were studied. The BLM (biotic ligand model) was used to study the effect of long-distance inter-basin water transfer on the bioavailability of Cu in receiving waters. The results showed that the TOC (total organic carbon) and TDS (total dissolved solids) in the BT Reservoir water were 10 times and 4.6 times greater than those of the DJK Reservoir water, respectively. The ions in the BT Reservoir were mainly (K++Na+)-(SO42-+CI-), while the ions in the DJK Reservoir were mainly (Ca2++Mg2+)-HCO3-. The results from the BLM showed that the main species of Cu in the water was total organic Cu (Torg Cu), which accounted for 98.69% and 99.77% of the Cu in the DJK Reservoir and BT Reservoir, respectively. The LC50 of Cu for Daphnia magna was 1203.40 ± 57.70 μg/l in the BT Reservoir and only 101.93 ± 7.60 μg/l in the DJK Reservoir. The criteria maximum concentration value of the BT Reservoir was 13.75 times that of the DJK Reservoir, while the criteria continuous concentration value of the BT Reservoir was 13.76 times that of the DJK Reservoir. These results showed that the heavy metals content in water bodies should not be used as the only consideration for water ecological security in the inter-basin water transfer process, and that differences in water quality criteria values caused by differing water environmental qualities in the river basins must be taken into consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call