Abstract

PurposeThe purpose of this paper is to evaluate the galvanic corrosion of nitinol orthodontic wires with six dental alloys in artificial saliva and consider the effect of initiated localized corrosion and real surfaces of anode and cathode on galvanic current.Design/methodology/approachLinear polarization and cyclic polarization curves for each alloy in de‐aerated Duffo and Castillo's artificial saliva are obtained. Galvanic corrosion investigation is conducted by polarization curve intersection and mixed potential theory methods. In order to verify the initiation of localized corrosion, scanning electron microscopy is used.FindingsInitiation of localized corrosion on the anode increases the galvanic current up to 45 times and therefore considering the effect of localized corrosion on galvanic corrosion is necessary. Placing stainless steel brackets or Aristaloy amalgam in direct contact to nitinol arch wire is not recommended.Originality/valueIn order not to underestimate the galvanic corrosion between two alloys, it is recommended to consider the effects of localized corrosion and anode/cathode surface area ratio. In this paper, an electrochemical method for estimating these factors is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.