Abstract
Damage evolution of Si particles in a Sr modified cast A356(T6) Al alloy is quantitatively characterized as a function of strain under tension, compression, and torsion. The fraction of damaged Si particles, their size distributions, and orientation distribution of particle cracks are measured by image analysis and stereological techniques. Silicon particle cracking and debonding are the predominant damage modes. Particle debonding is observed only under externally applied tensile loads, whereas particle cracking is observed under all loading conditions. The relative contributions of Si particle debonding and fracture to the total damage strongly depend on stress state and temperature. For all loading conditions and stress states studied, the average size of damaged Si particles is considerably larger than the bulk average size. The rate of damage accumulation is different for different loading conditions. At a given strain level, Si particle damage is lowest under compression and highest under torsion. The anisotropy of the damage is highly dependent on the deformation path and stress state. Under uniaxial tension, the cracks in the broken Si particles are mostly perpendicular to the loading direction, whereas in the compression test specimens they are parallel to the loading direction. The Si particle cracks in the torsion and notch-tension test specimens do not exhibit preferred orientations. The quantitative microstructural data are used to test damage evolution models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.