Abstract

Context: Anti-HER2 immunoliposomes are promising nanotechnology based systems for active targeting of breast tumors, which depends on the amount of incorporated antibody.Objective/Aim: In this work, we investigated the possible effect of lipid composition on the incorporation of trastuzumab-PEG-PE micelles into nanoliposomes and on their subsequent specific cellular targeting.Materials and methods: Trastuzumab (anti-HER2 monoclonal antibody) was monothiolated and conjugated to maleimide-PEG-PE micelles. Liposomes of different lipid compositions were prepared by the thin layer hydration. Trastuzumab-PEG-PE micelles were incorporated into the liposomes by the post-insertion method. The percentage of lipid mixing was determined based on fluorescence resonance energy transfer. Cellular binding and uptake of rhodamine-labeled immunoliposomes were studied in SKBR-3 (HER2+++) and MCF-7 (HER2+) cells. Also, antitumor cell activity of the immunoliposomes was compared to free trastuzumab and the liposomes.Results: The lipid mixing of trastuzumab-PEG-PE micelles depended on the liposome composition. The immunoliposomes containing DPPC, cholesterol and PEG-PE showed prominent lipid mixing. The lipid mixing was consistent with the cell binding results which showed an efficient and specific binding of the immunoliposomes to SKBR-3 cells. Antitumor cell activity of the immunoliposomes in SKBR-3, unlike MCF-7 cells, depended on the content of trastuzumab.Discussion: Cholesterol and PEG-PE in the liposome composition are prerequisites for a successful lipid mixing due to their ability to facilitate fusion. The higher lipid mixing results in higher antibody incorporation and consequently higher targeted cell binding.Conclusions: The lipid mixing depends on the liposome composition, which reflects targeted cell binding of the immunoliposomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.