Abstract
Tin(II) oxide (SnO), as one of the very few p-type semiconducting oxides is becoming a promising key material in different fields of research. However, the oxidation towards the most stable SnO2 commonly hinders its synthesis and applicability. In that sense, insights in the achievement of SnO with controlled dimensions, morphology and doping, as well as in the study of its optoelectronic properties and stability, are required in order to exploit and widen its applicability. In this work, we report on the synthesis of lithium-doped tin(II) oxide (SnO) nanostructures by a hydrolysis process. Li-doped SnO presents similar morphology as undoped SnO, nonetheless Li doping induces changes in the photoluminescence and electrical properties. Theoretical calculations have been also carried out, complementary to the experimental results. Moreover, the stability of this material under temperature and UV and VIS-laser irradiation is also studied, aiming to determine the ranges within this material could be exploited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.