Abstract

The cerebellum, probably owing to its traditional concept limited to motor control, is less well studied in immunoregulation. To obtain more comprehension and knowledge on cerebellar functions, we investigated effect of cerebellar fastigial nucleus (FN), an output nucleus of the spinocerebellum, on lymphocyte functions, and explored central and peripheral pathways involved in the effect. Kainic acid (KA) was microinjected into bilateral FN of rats (0.4 μg KA in 0.4 μl saline for each side) to destroy neurons of the nuclei. On days 8, 16 and 32 following the FN lesions, methyl-thiazole-tetrazolium (MTT) assay and flow cytometry were used to measure proliferation of concanavalin A (Con A)-induced lymphocytes and cytotoxicity of natural killer (NK) cells against YAC-1 cells, respectively. Meanwhile, glutamate and monoamine neurotransmitters, including norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT), in the hypothalamus and the spleen were determined by means of high-performance liquid chromatography (HPLC) assay. Adrenocorticotropic hormone (ACTH) and cortisol in the plasma were also detected respectively by radioimmunoassay and chemiluminescent immunoassay after the FN lesions. We found that the Con A-induced lymphocyte proliferation and the NK cell cytotoxicity were both significantly enhanced on days 8, 16 and 32 following the effective lesions of the bilateral FN in comparison with those of matching control rats microinjected with saline in their FN. Contents of glutamate and NE, not DA and 5-HT, in the hypothalamus, and concentration of NE, not DA, in the spleen were all remarkably reduced on the 16th day following the FN lesions, when both the T lymphocyte proliferation and the NK cell cytotoxicity were dramatically increased. However, levels of ACTH and cortisol in the plasma had no notable differences between FN lesion rats and FN saline ones when the enhanced T and NK cell functions occurred. These findings reveal that the cerebellar FN participates in the modulation of lymphocyte functions and that the hypothalamus and sympathetic nerves innervating lymphoid organs are involved in this neuroimmunomodulation. Thus, a possible central and peripheral pathway for the spinocerebellum to regulate lymphocyte functions is suggested, i.e. cerebellum–hypothalamus–sympathetic nerves–lymphocytes, while the functional axis of hypothalamus–pituitary–adrenal gland may not contribute to mediation of the spinocerebellar immunomodulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call