Abstract

AbstractGlazed hollow bead, cement, fly ash, and latex powder were used to prepare a glazed hollow bead thermal insulation material by way of compression molding, and the effects of redispersible latex powder on the mechanical properties and water resistance performance of the material were studied. In addition, the action mechanism of latex powder was analyzed. The surface of alkali-resistant glass fibers was treated by styrene-acrylic emulsion, and the effects of glass fibers on the mechanical properties of glazed hollow bead thermal insulation materials before and after treatment were studied, respectively. Moreover, the fracture morphology of the samples was observed and analyzed to explore the reinforced mechanism of fiber. The results show that when the dosage of latex powder is 4%, compared with blank samples, the sample’s flexural and compressive strengths increase by 48% and 20.83%, respectively, and the 2-h and 24-h water absorption of the samples is reduced by 71.37% and 66.94%, respectively. When the dosage of surface-treated fibers is 1.0%, the flexural strength of the samples increases by 35.71% and the compressive strength of the samples increases by 8.34% compared with samples that were mixed with untreated fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call