Abstract

In this work, Pd nanoparticles were synthesized by pulsed nanosecond laser ablation in deionized water using Q-switched Nd:YAG and ArF excimer lasers, independently. The aim is to investigate the wavelength dependence of nanoparticle formation mechanisms using IR and UV laser irradiations. Pd nanoparticles fabricated by a Q-switched Nd:YAG laser show a perfect spherical morphology, whereas those due to the ArF excimer laser undergo fragmental shapes. Furthermore, the production rate of Pd nanoparticles generated at IR is noticeably greater than that at UV wavelength. Moreover, the plasma temperature induced by the Nd:YAG laser is higher than that generated by the ArF laser mainly due to the stronger inverse Bremsstrahlung process at the IR region. It was shown that the ArF laser fabricates palladium oxide structure with much higher rate with respect to the Nd:YAG laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.