Abstract

Pulsed laser ablation in liquid (PLAL) as a prominent technique for nanofabrication was employed to synthesize palladium (Pd) nanoparticles in different liquids. The synthesis of Pd nanoparticles was developed using a pulsed Nd:YAG laser with its fundamental wavelength output of 1064nm (10Hz, 10ns) in a range of energy fluence (40.5–8J/cm2). Pure Pd metal target was immersed in distilled water, methanol–water mixture (1:1) and sodium dodecyl sulfate (SDS) to study the effect of the nature of the liquid media. Laser post-irradiation and ultrasonic treatments were applied to the precipitated colloidal solution to investigate their effects on the re-dispersion and stability. The mean size, size distributions, shape, elemental composition, optical properties and stability of nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. TEM characterizations showed smaller nanoparticles in methanol–water mixture in comparison with the other liquids. Spherical morphology was observed for Pd nanoparticles synthesized in distilled water and methanol–water mixture. In the case of SDS, spherical nanoparticles embedded on the surfactant were observed. The effect of energy fluence was different for each liquid media. Laser post-irradiation and ultrasonic agitation worked as efficient methods to re-disperse the precipitates of NPs and to recover their optical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call