Abstract

Laser powder bed fusion (LPBF) is an emerging metal additive manufacturing method that can pave a pathway for manufacturing NiTi shape memory alloys (SMAs) with high performance. Considering the unique characterizations of LPBF process, the position and sequence of laser irradiation are different under different laser scanning modes, which will affect the performance of as‐built samples. Herein, four different chessboard sizes are utilized to fabricate NiTi parts. The surface quality and relative density first increase and then decrease with the increasing chessboard size, obtaining the optimal surface roughness of 9.95 μm and relative density of 99.7%, respectively, at a chessboard size of 5 mm. As the chessboard size increases, the more pronounced precipitation of Ni4Ti3 with a higher quantity induces a strengthening effect, leading to a higher microhardness value of ≈290 HV0.2 at a chessboard size of 9 mm. The electrochemical test shows a better corrosion resistance with a corrosion potential of 0.101 V and a corrosion current density of 1.670 × 10−5 A cm−2 at a chessboard size of 5 mm. The corrosion mechanism is further revealed. This work emphasizes the importance of chessboard size as a reference for optimizing the process of additive‐manufactured NiTi SMAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call