Abstract

The transit time of the small intestine, in addition to lactase activity, may influence lactose digestion and thus play a role in the occurrence of lactose intolerance. The objectives of this study were to investigate the effect of lactose on the oro-cecal transit time (OCTT) in lactose digesters and maldigesters as well as the possible mechanisms underlying these effects. Twenty-eight Chinese subjects and 16 Dutch subjects underwent one glucose and one lactose challenge in two single-blinded tests. Twenty of the Chinese subjects without complaints after the challenge then underwent another lactose challenge. A 6-h symptom score (SSC) was recorded, breath-hydrogen concentration was measured and OCTT after consumption of glucose and lactose was determined with the lactose-[13C] ureide breath test. The lactose digestion index (LDI) was determined in both the Dutch and 20 Chinese subjects with the 13C/2H-glucose test. Lactose digesters (n = 13) and maldigesters (n = 20) were classified based on the results of the LDI and the breath-hydrogen test. The OCTT after the lactose and glucose challenges did not differ in the digesters, whereas in the maldigesters the OCTT, after the lactose challenge, was shorter than that after glucose. There was no difference in OCTT after the glucose challenge between the maldigesters and the digesters. However, the OCTT after the lactose challenge in the maldigesters was shorter than that in the digesters. The LDI of the digesters was significantly higher than that of the maldigesters. The OCTT after the lactose challenge was not correlated to the LDI in the maldigesters nor in the digesters. Based on the SSC after the one glucose and two lactose challenges, a tolerant (n = 7) and an intolerant (n = 5) group were classified in the Chinese subjects. The two groups did not differ in their LDI or OCTT after the lactose challenge. The OCTT after the lactose challenge was not correlated to the SSC or the LDI. Lactose triggers a faster oro-cecal transit in lactose maldigesters, but not in digesters. However, this could not be explained by intestinal distension resulting from the osmotic load posed by maldigested lactose, and thus suggests a direct effect of lactose on intrinsic factors regulating intestinal motility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.