Abstract
The objective of this study was to determine the effect of inoculation with Lactobacillus hilgardii with or without Lactobacillus buchneri on the fermentation, chemical composition, and aerobic stability of sorghum and corn silage after 2 ensiling durations. Sorghum forage was harvested at 27% dry matter (DM; experiment 1), and different corn hybrids were harvested at late (43.8% DM; experiment 2) or normal maturity (34% DM; experiment 3). All harvested forages were chopped and ensiled in quadruplicate in vacuum-sealed nylon-polyethylene bags (40 × 61 cm) for 30 and 90 d after treatment with (1) deionized water (uninoculated) or (2) L. buchneri (1.5 × 105 cfu/g of fresh weight; LB); (3) L. hilgardii (1.5 × 105 cfu/g of fresh weight; LH); or (4) L. buchneri and L. hilgardii (1.5 × 105 cfu/g of fresh weight of each inoculant). Data for each experiment were analyzed separately accounting for the 2 × 2 × 2 factorial treatment arrangement. Inoculating sorghum forage with LB or LH separately increased acetate and 1,2 propanediol concentration, tended to increase DM loss, reduced lactate concentration and the lactate-to-acetate ratio, and increased aerobic stability after 90 but not after 30 d of ensiling. Inoculating late-harvested corn silage with LB or LH separately increased and decreased DM loss, respectively, increased 1,2 propanediol concentration, reduced lactate-to-acetate ratio and yeast counts but did not affect aerobic stability. Inoculating normal-harvested corn silage with LH reduced DM loss and increased 1,2 propanediol concentration and yeast counts; LB reduced lactate concentration, lactate-to-acetate ratio, and total acids. Either inoculant alone increased aerobic stability after 30 or 90 d. The main benefit of combining LB with LH was prevention of increases in DM losses by LH or LB separately. No improvement in aerobic stability resulted from applying LH instead of LB separately or from combining them. Application of LB or LH separately improved aerobic stability of sorghum silage after 90 d and normal-harvested corn silage after 30 or 90 d but did not affect that of late-harvested corn silage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.