Abstract
1. We investigated the influence of visual experience upon vestibular compensation in monkeys. Two paradigms were used to elicit vestibular adaptation: artificially imposed motion of images upon the retina during head rotation and unilateral labyrinthectomy. Two groups of animals were investigated: monkeys that underwent a bilateral occipital lobectomy and intact monkeys without a cortical lesion. Occipital lobectomy alone caused only a minor change in the vestibuloocular reflex (VOR); the gain (eye vel/head vel) decreased slightly (10-15%) for high speeds of rotation (180-300 degrees/s). 2. In response to a 4-h period of continuous oscillation of the head (0.25 Hz, 30 degrees/s) with the visual scene made to move in phase with the head (X0 viewing) or out of phase with the head (X2 viewing), intact monkeys showed an average 40% decrease or increase, respectively, of the VOR gain measured in darkness. After occipital lobectomy this adaptive capability was diminished, primarily for increasing the VOR gain after X2 viewing (42% preop to 13% postop). 3. Unilateral labyrinthectomy in either occipital-lobectomized or in otherwise intact monkeys led to a static imbalance with initial (18- to 20-h postlesion) values of spontaneous nystagmus of 22-62 degrees/s measured in darkness and to a dynamic disturbance with an approximately 50% decrease of VOR gain. Compensation for both abnormalities was studied in three groups of animals: previously occipital-lobectomized monkeys kept in the light after labyrinthectomy, intact monkeys kept in the light after labyrinthectomy, and intact monkeys kept in the dark for 4 days after labyrinthectomy and then exposed to light. Spontaneous nystagmus disappeared at the same rate in each group of animals. VOR gain increased in the intact monkeys kept in the light after labyrinthectomy but not in the intact monkeys kept in the dark after labyrinthectomy until they were exposed to light. The occipital-lobectomized monkeys showed some recovery of VOR gain (approximately 25-40%), but only at low speeds of rotation (30-60 degrees/s). Occipital lobectomy performed in monkeys after they had already compensated for a labyrinthectomy caused the VOR gain to drop to values approximately 0.5 but without any recurrence of spontaneous nystagmus. 4. Our results indicate that visual experience after labyrinthectomy is essential for recovery of VOR gain but not for resolution of spontaneous nystagmus. Furthermore, geniculostriate pathways play a major role in providing information about high velocities of retinal image motion that is necessary for the acquisition of VOR gain adaptation.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.