Abstract
Pulsed film cooling was studied experimentally to determine its effect on film-cooling effectiveness. The film-cooling jets were pulsed using solenoid valves in the supply air line. Cases with a single row of cylindrical film-cooling holes inclined at 35 deg to the surface of a flat plate were considered at blowing ratios of 0.25, 0.5, 1.0, and 1.5 for a variety of pulsing frequencies and duty cycles. Temperature measurements were made using an infrared camera, thermocouples, and cold-wire anemometry. Hot-wire anemometry was used for velocity measurements. The local film-cooling effectiveness was calculated based on the measured temperatures, and the results were compared to baseline cases with continuous blowing. Phase-locked flow temperature fields were determined from cold-wire surveys. Pulsing at high frequencies helped to improve film-cooling effectiveness in some cases by reducing overall jet liftoff. At lower frequencies, pulsing tended to have the opposite effect. With the present geometry and a steady mainflow, pulsing did not provide an overall benefit. The highest overall effectiveness was achieved with continuous jets and a blowing ratio of 0.5. The present results may prove useful for understanding film-cooling behavior in engines, where mainflow unsteadiness causes film-cooling jet pulsation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have