Abstract
Abstract Nanoparticles can be adsorbed at the gas-liquid interface to improve the stability of foam. However, homogeneous nanoparticles exhibit low surface activity, and their migration to the gas-liquid interface requires significant energy input. This leads to harsh foaming conditions and severely limits the application of homogeneous nanoparticles in foam stability. A microfluidic visualisation model for the study of Janus nanoparticle complex systems was used to investigate the formation behaviour of trapped bubbles in a single connected pore-throat model. The foam generated in the pore showed reduced quantities, sizes, improved quality, and enhanced stability compared to both surfactant systems and hydrophilic nanoparticle complex systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.