Abstract

Ultrasound is used as degradation of hazardous organic compounds. In this study, indirect ultrasonic irradiation method was applied to the degradation process of phenol, the model hazardous organic compound, and the effects of irradiation distance on radical generation and ultrasonic power were investigated. The chemical effect estimated by KI oxidation dosimetry and ultrasonic power measured by calorimetry fluctuated for the irradiation distance, and there was a relationship between the period of the fluctuation of ultrasonic effect and the wavelength of ultrasound. The degradation of phenol was considered to progress in the zero-order kinetics, before the decomposition conversion was less than 25%. Therefore, the simple kinetic model on degradation of phenol was proposed, and there was a linear relation in the degradation rate constant of phenol and the ultrasonic power inside the reactor. In addition, the kinetic model proposed in this study was applied to the former study. There was a linear relation in the degradation rate constant of phenol and ultrasonic energy in the range of frequency of 20–30 kHz in spite of the difference of equipment and sample volume. On the other hand, the degradation rate constant in the range of frequency of 200–800 kHz was much larger than that of 20–30 kHz in the same ultrasonic energy, and this behaviour was agreed with the former investigation about the dependence of ultrasonic frequency on chemical effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.