Abstract

In this work, the medium containing ionic products of dicalcium silicates (Ca(2)SiO(4)) for culturing MG63 cells was prepared by immersing a titanium alloy plate with the plasma sprayed Ca(2)SiO(4) coatings in DMEM solution. The effect of the ionic products on cellular differentiation, collagen production, and local growth factors (prostaglandin E(2) [PGE(2)] and transforming growth factor-β [TGF-β1]) of osteoblast-like MG63 cells were investigated. The normal DMEM was also used to culture MG63 cells as the control group. Differentiation of cell was evaluated by detecting alkaline phosphatase (ALP) activity and osteocalcin (OC) synthesis as well as their gene expression. Collagen production was analyzed by Sircol assay. The levels of PGE(2) and TGF-β1 in culture medium were measured using enzyme-linked immunosorbent assay (ELISA). The gene expressions of TGF-β receptors (TGF-β RI and TGF-β RII) were also measured by real-time PCR technology. MG63 cells cultured in DMEM containing ionic products of Ca(2)SiO(4) coating showed enhanced differentiation and increased collagen production. The results obtained from ELISA showed that the levels of PGE(2) and TGF-β1 in experimental group were higher than that in control. The gene expression of TGF-β receptors was upregulated, indicating that more TGF-β1 bonded to their receptors which produce more effects on the osteoblastic activity, leading to enhanced differentiation and synthetic activity of osteoblast. It is concluded that ionic products of Ca(2)SiO(4) coating may enhance cellular differentiation and collagen production by influencing TGF-β1 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.