Abstract

ABSTRACT Ionic liquid modified multiwalled carbon nanotube (MWCNT) based styrene–butadiene rubber (SBR) nanocomposites were prepared with the two-roll mill mixing method, and the rheological measurements were used to study the dispersion of MWCNTs on a microscopic scale and its compatibility with the SBR matrix. Viscous liquid-like rheological behavior at low MWCNT loadings and pseudo-solid-like rheological response at high MWCNT loadings were observed, showing the gradual transformation from individual structures of MWCNTs to polymer bridged MWCNT networks. A decrease in the mobility of SBR macromolecular chains by the geometric confinement of three-dimensional networks of MWCNTs further confirms the interdeveloped pseudo-solid behavior of filled composites. Dynamic viscoelasticity data have been compared with the theoretical Carreau–Yasuda equation. Transmission electron microscopy of the samples reveals that MWCNTs are randomly dispersed in the rubber matrix. Finally the nature of the filler association and its role in the nonlinear viscoelastic properties at large strain amplitudes were investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call