Abstract

The effect of Cu-Sn intermetallic compounds (IMC) on the fatigue failure of solder joints during thermal cycling has been studied. The samples consist of components [leadless ceramic chip carrier (LCCC)] soldered onto FR-4 printed circuit board (PCB), and are prepared by conventional reflow soldering using a 63Sn-37Pb solder paste. The specimens are subjected to thermal cycling between -35/spl deg/C and 125/spl deg/C with a frequency of two cycles per hour until failure. The results indicate that the fatigue lifetime of the solder joints depends on the thickness of IMC's layer between Cu-pad and bulk solder, and the relation of the lifetime to the thickness can be described as a monotonically decreasing curve. The lifetime is very sensitive to the thickness of the IMC when the thickness is less than 1.4 /spl mu/m. During thermal cycling the thickness of the IMC layer increases and then the interface between IMC and solder becomes gradually flatter. The results of X-ray diffraction and scanning electron microscope (SEM) analysis show that cracks propagate along the interface between the IMC layer and the solder joint. The Cu/sub 3/Sn (/spl epsiv/-phase) is also found to form between the Cu-pad and /spl eta/-phase during thermal cycling. On the basis of the above results, the thick and flattened IMC layer is shown to responsible for the fatigue failure of solder joint during thermal cycling. The results of this paper can be used to optimize the reflow soldering process for the fabrication of robust solder joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.