Abstract

An excellent blood-compatible polymer, poly(2-methoxyethyl acrylate) (PMEA), exhibits nanometer-scale phase-separated structures at the interface with water or phosphate-buffered saline (PBS), and fibrinogen adsorption is suppressed, especially on the water-rich region. To understand the correlation between the interfacial structure based on the grafting density of PMEA and blood compatibility, grafted PMEA (gPMEA) surfaces with controlled density were prepared by immobilizing thiol-terminated PMEA on a gold substrate. The amount of adsorbed fibrinogen and the number of adhered platelets on gPMEAs decreased first with the increasing grafting density (σ), but increased after showed minimum at σ of approximately 0.11 chains/nm2. The interfacial structures of the gPMEA/PBS interface changed with grafting density, and the maximum area of water-rich region was obtained at σ = 0.11. The water contact angle at σ = 0.11 is smaller than that at the other grafting density. These results revealed that hydration to the polymer is very effective to suppress the platelet adhesion and water-rich region shows excellent blood compatibility on gPMEA surfaces. This work clearly indicated that the density of PMEA affects the interfacial structure and plays an important role in the blood compatibility of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.