Abstract

The role of the interfacial oxide (IFO) between the polysilicon and monosilicon emitter regions on the noise behavior of n-p-n poly-emitter bipolar transistors was investigated through 1/f noise measurements. Bipolar junction transistors with different IFO thickness, and emitter geometry were utilized. Measurements with variable external base bias resistance (R/sub S/) were used to investigate the relative contribution of each individual noise source from the base current (S/sub IB/), the collector current (S/sub IC/) and, the internal emitter and base series resistances (S/sub Vr/). When the voltage noise power spectral densities S/sub VC/ and S/sub VB/ were measured across resistances in series with the collector and base, respectively, using a relatively large R/sub S/ (/spl sim/1 M/spl Omega/), S/sub IB/ was found to have the dominant noise contribution at lower bias currents. On the other hand, when the voltage noise power spectral densities S/sub VC/ and S/sub VE/ were measured across resistances in series with the collector and emitter, respectively, in a different experimental setup with a low R/sub S/ value, S/sub Vr/ was found to have the dominant noise contribution at higher bias currents. IFO was found to increase S/sub IB/, S/sub IC/, and S/sub Vr/. S/sub IB/ was modeled as a combination of tunneling and diffusion fluctuations of the minority carriers in the emitter; whereas S/sub IC/ was modeled as a combination of number and diffusion fluctuations of the minority carriers in the base. S/sub Vr/ was attributed to the internal emitter resistance noise originating from the fluctuation in the majority carrier flow through the IFO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call